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The orientation of an ellipsoid falling in a viscoelastic fluid is studied by methods of 
perturbation theory. For small fall velocity, the fluid's rheology is described by a 
second-order fluid model. The solution of the problem can be expressed by a dual 
expansion in two small parameters : the Reynolds number representing the inertial 
effect and the Weissenberg number representing the effect of the non-Newtonian stress. 
Then the original problem is split into three canonical problems: the zeroth-order 
Stokes problem for a translating ellipsoid and two first-order problems, one for inertia 
and one for second-order rheology. A Stokes operator is inverted in each of the three 
cases. The problems are solved numerically on a three-dimensional domain by a finite 
element method with fictitious domains, and the force and torque on the body are 
evaluated. The results show that the signs of the perturbation pressure and velocity 
around the particle for inertia are reversed by viscoelasticity. The torques are also of 
opposite sign: inertia turns the major axis of the ellipsoid perpendicular to the fall 
direction; normal stresses turn the major axis parallel to the fall. The competition of 
these two effects gives rise to an equilibrium tilt angle between 0" and 90" which the 
settling ellipsoid would eventually assume. The equilibrium tilt angle is a function of 
the elasticity number, which is the ratio of the Weissenberg number and the Reynolds 
number. Since this ratio is independent of the fall velocity, the perturbation results do 
not explain the sudden turning of a long body which occurs when a critical fall velocity 
is exceeded. This is not surprising because the theory is valid only for slow 
sedimentation. However, the results do seem to agree qualitatively with 'shape tilting' 
observed at low fall velocities. 

1. Introduction 
In many ways the motions of spherical and long particles in viscoelastic and 

Newtonian fluids are maximally different. A sphere dropped near a wall in a 
Newtonian fluid will be pushed away from the wall; in a viscoelastic fluid it will be 
pulled to the wall. Two spheres launched side by side will be sucked together in a 
viscoelastic fluid but will repel each other in a Newtonian fluid (Joseph et al. 1994). 
Spheres which are pulled by a small component of gravity onto a plane wall tilted 
slightly away from the vertical will rotate down the wall normally in a Newtonian 
liquid as in the case of a dry wall, but will rotate anomalously in the contrary sense in 
a viscoelastic liquid (Liu et al. 1993). A long particle falling in an infinite domain will 
settle with its broad side perpendicular to the fall in a Newtonian fluid and parallel to 
the fall in a viscoelastic fluid (Liu & Joseph 1993; Joseph & Liu 1993). 
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In a general sense, the orientation of a long body settling in a viscoelastic liquid is 
determined by a competition between inertia and viscoelasticity, and in many cases the 
viscoelastic effects are felt as normal stresses (Joseph et al. 1992). The competition is 
a complicated affair; ultimately, at high speeds inertia always dominates and the 
transition to an inertially dominated flow is fairly abrupt and appears to be associated 
with a critical value of the viscoelastic Mach number. In this interpretation, the 
broadside-parallel-to-gravity configurations are subcritical and the broadside-on 
configurations are supercritical in the viscoelastic liquids. 

There are a small number of papers which treat orientations of long bodies in 
sedimentations and particle interactions in shear flows. These have been reviewed by 
Liu & Joseph (1993) and will not be discussed here. It may be useful to remark that the 
prior literature did not frame the peculiar observations reported in terms of the 
competition of inertia and normal stresses. 

The focus of the present paper is on the mechanisms which control the orientation 
of long bodies in sedimentation. We adopt a reference frame fixed on the particle and 
the undisturbed flow is assumed steady and uniform, impinging upon the particle from 
a certain incident angle. The torque on the particle suggests the preferred orientation 
that the particle would assume in sedimentation. We treat the problem as a 
perturbation of the state of rest for small sedimentation velocity. A second-order fluid 
model is used, as it is the universal asymptotic form of general constitutive equations 
for simple fluids at second order. This allows us to express the solution in a dual 
expansion in two small parameters : the Reynolds number representing the inertial 
effect and the Weissenberg number representing the normal stress effect. Then the 
original problem can be broken into three canonical problems: one is the basic Stokes 
flow and the others modifications to the basic flow by inertial and normal stress effects. 
Each of the three problems can be solved numerically using a finite element method 
with fictitious domain, and the force and torque on the particle can be evaluated. 

Leal (1975) and Brunn (1977) used the same regular perturbation to study the 
orientation of a non-spherical body settling without inertia in a second-order fluid. 
The zeroth-order problem is the Stokes flow, for which Leal (1975) employed an 
approximate solution for slender bodies. The first-order force and torque on the body 
are obtained by virtue of the Lorentz reciprocal theorem without actually solving for 
the velocity and pressure fields at this order. His results show that a slender body would 
fall with its long axis vertical when the inertia is negligible. Because the analytic 
calculation is rather involved, it is difficult to extract the physical mechanism 
responsible for the preferred orientation. In particular, the behaviour of the particle 
cannot be related to the flow field around it because the first-order solution is not 
available. The numerical simulation presented in this paper has several advantages 
over the analytical results in the literature. First, the velocity, pressure and stress 
distributions at the first order are obtained explicitly; these are important in 
understanding the mechanisms through which viscoelasticity and inertia alter the fluid 
flow and in turn affect the motion of the solid body. In addition, both the inertial and 
the normal stress effects are retained in our computation so that their competition can 
be assessed. Finally, the numerical solution is not restricted by the aspect ratio of the 
ellipsoid. 

2. Formulation of the problem 
We consider an axisymmetric ellipsoid of aspect ratio 2: 1 fixed in space. Its major 

and minor axes are a and b = a/2. The computational domain is taken to be 
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FIGURE 1. (a) The geometry of the three-dimensional boundary value problem. 
(b) The symmetry plane at x = 0.515. 

a rectangular box enclosing the ellipsoid (figure 1). The bottom of the box is a 
square with each side L = 4a, and its height is 2.5L. The ellipsoid is centred at 
(xoyc, z,) = (OSL, L, OSL), with its major axis lying in the vertical plane x = 0.5L and 
making an angle a with the horizontal. A uniform flow of velocity Ue, is coming from 
y = - 00 toward the particle. All six faces of the box are assumed to be undisturbed by 
the particle and the uniform velocity Ue, is imposed as a Dirichlet boundary condition. 
Obviously, the walls are not far enough from the particle and will increase the drag and 
torque on the particle. Numerical tests show that larger computational domains 
become very expensive. So we will settle for the L / a  = 4 :  1 blockage ratio. If the effect 
of blockage is equivalent to an increased fluid velocity, then the preferred orientation 
of the ellipsoid will not be affected, as will be evidenced by equations (8) and (16). 

The velocity u and pressure p of the flow field around the body is determined by the 
following boundary value problem : 

(1) I V * U  = 0, ~ u - V U  = V. T, 
T = - p / + p A , + a , A , + a , A ; ,  

where p, ,u, a, and a2 are the density, shear viscosity, the first and second quadratic 
constants of the second-order fluid; r is the outer boundary and y is the surface of 
the body. A ,  and A ,  are the first- and second-order Rivlin-Ericksen tensors. We define 
dimensionless variables (indicated by an asterisk) by 

ulr = Ue,, uIy = 0, 

Then problem (1) can be re-written as (the asterisk omitted hereafter) 

(2)  
v - u  = 0, 

Vp-V2u = -R(u.Vu)- WV.(A2+~A,2) ,  

ulr = e y ,  uly = 0, 
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where R = ,oUa/p is the Reynolds number, W = -a1 Ulpa  is the Weissenberg number 
and c = a2/a1. For most polymer solutions, a1 < 0, a, > 0, so that W > 0 and c < 0. 
We use a typical value e = - 1.87 suggested by Joseph (1990, p. 516) for the case in 
which the second normal stress coefficient is - 1115.4 of the first. The Weissenberg 
number can be considered as the limiting zero-shear value of the ratio of normal stress 
to shear stress. This ratio may be related to the rod-climbing constant p ,  which is 
readily measurable in experiments (Joseph 1990) : 

y -a,(U/a)2 a U 1.35b"U w=-= =-L==- 
7 p(Ula) Pa P a '  

Assuming R 4 1 ,  W 4 1 ,  the solution to (2) can be expressed as 

(3) 
u = u, + Ru, + Wu, +second- and higher-order terms, 
p = p ,  + Rp, + Wp, +second- and higher-order terms. 

Then problem (2) can be broken into three problems if we keep the first-order terms 
in R and W onlv: 

I 
v-u ,  = 0, vpo-v2uo = 

uolr = e y ,  
Stokes problem : 

u,ly = 0; 
(4) 

( 5 )  

) (6) 

i v * u ,  = 0, 

ulIi-+y = 0; 

v -u ,  = 0, 

lTfY = 0. 

Inertial perturbation : Vp,  - V'u, = - (u, - Vu,), 

Normal stress perturbation : Vp, - V'u, = - V - (A , + eA :) lug,  
The stress tensor can be written as 

T = [ - P o  /+A,(u,)l+ R[ -PI/+ A & 4 1 +  W [  - P z  I+ A&,) - (4 + 4) IuJ 
= T,+RT,+ WT,, (7) 

and the dimensionless force and torque on the body are ] (8) 
F =  n-TdA=I;,+RF,+WF,,  s, 

s, M =  (r-rY,)X(n.T)dA = M , + R M , + W M , .  

Note that the dimensional force is proportional to the dimensionless force multiplied 
by U. There is an additional U-factor in R and W so that the dimensional drags due 
to inertia and viscoelasticity are proportional to U 2 .  Since the total drag must change 
sign when U does, 4 and F, are necessarily zero for particles with fore-aft symmetry. 
A similar argument leads to Mo = 0, a well-known result for Stokes flow. Leslie (1961) 
showed that the first-order contribution of viscoelasticity to the drag on a sphere 
vanishes. The same result for slender bodies with fore-aft symmetry was obtained by 
Leal (1975). 

3. Numerical method 
The fictitious domain method has been used to solve boundary value problems on 

multiply-connected domains. The basic idea is to convert the original problem into a 
new one posed on an auxiliary domain of a simple shape which contains the actual 
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domain. Then structured mesh and fast solvers can be used on the auxiliary domain. 
The application of this method to incompressible viscous flows has been explored by 
Glowinski, Pan & Periaux (1994). In our case, we need to solve the three Stokes type 
of problems (4), ( 5 )  and (6). The basic procedure is explained as follows. 

Consider a Stokes type of boundary value problem posed on a domain shown in 
figure 1 :  

(9) I V . u  = 0, V p - V 2 u  = f in 52\w, 

ulr = gi, 

uIy = g ,  (with l r g l - n  dA + l y g , . n  dA = 0 

where 52 is the entire domain enclosed by the rectangular box r and w is the sub- 
domain inside the ellipsoid. The surface of the ellipsoid is y ;  f represents the 
perturbation terms in ( 5 )  and (6). For a clearer view, we have put these symbols in a 
two-dimensional domain (figure 1 b). The procedure outlined below applied, of course, 
to both two- and three-dimensional problems. 

We embed the multiply-connected domain 52\w in 52. Iffis an extension off in Q, 
then (9) is equivalent to the following problem on the entire domain Q: 

Find U E ( H ' ( Q ) ) ~ ,  P ~ ( q l q ~ L ' ( 0 ) ,  q dV = O > , A E ( L ' ( ~ ) ) ~ ,  such that s, 
VU-VUdV- PV.vdV= f .udV+ A-UdA, VUE(H,'(Q))~, s, lQ L - s, 

V -  u= 0, 

ulr = g1, ul, = g,. 

The .solution to (9) is, then, u = UIR\w,p = PIQ\w. Note that the effect of the actual 
geometry is contained in s Y l v  dA and in the second boundary condition. 

The above problem on the fictitious domain is solved using a conjugate gradient 
algorithm, which is explained in detail by Glowinski et al. (1994). Because of the simple 
geometry, a regular mesh is used. The rectangular box is cut into cubes of side 
h = L/Zh, and each cube is cut into 6 tetrahedrons, which are the finite elements in the 
solution of the elliptic problems arising from the conjugate gradient algorithm. The 
accuracy is believed to be of second order in h / L .  To compute the surface integral 
J,A. u dA, the surface of the ellipsoid is cut into Npieces by uniformly dividing the two 
angular coordinates 13 and $ (figure 2), such that the length of the sides for each piece 
is roughly equal to the linear dimension of the elements h. The multiplier vector A is 
taken to be constant on each piece. The right-hand-side terms in ( 5 )  and (6) are 
evaluated using second-order finite difference schemes. 

Because of the regular structure of the mesh, the surface of the particle is usually not 
represented by grid points, and the force and torque cannot be directly computed by 
the surface integrals in (8). We use the Gauss theorem to convert the surface integral 
on the ellipsoid into the summation of a surface integral on the enclosing box r and 
a volume integral on the volume occupied by the fluid: 

F = - n.  T dA-$,,,oV. T dV, 
Ji- 

where n is the inner normal vector on the six faces of the box. The volume integration 
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FIGURE 2. The surface of the ellipsoid is cut into square-like pieces using the two angles @ and 8. 

is done by adding up the contribution from the eight vertices in each cube. If any vertex 
is inside the ellipsoid, its contribution is excluded. To calculate the torque, we write 

(r--rC) x (n. T )  = n-7, 

where the tensor T is defined by 

xi being the components of r - rc .  Note that we use a left-hand coordinate system that 
gives the minus sign to the permutation tensor. Then the torque on the particle can be 
computed by 

T j k  = -x. 1. 7: 31 €.  zlk, 

M = -  n..rdA- V..rdV. (1 1) I, s,,,, 
Because of the error associated with the high-order differentiation in V.  T, the Stokes 

drag on the ellipsoid can be more accurately computed by studying the momentum 
balance in the fluid flow. As uniform flow is assigned to the inlet ( y  = 0) and outlet 
( y  = 2.5L) of the domain, the net momentum flux vanishes and the drag can be found 
from the pressure difference between the inlet and the outlet and the shear stress 
(denoted by t )  on the four side walls: 

5 = Jinletp d~-Joutle: d ~ - J i d e s  t dA. 

The torque M has to be computed directly from (1 1). 
A typical mesh (I, = 50) has 330 327 grid points, 1.89 x lo6 tetrahedron elements and 

about 40 pieces on the particle. Each of the three problems takes about 60 minutes on 
a Cray-XMP supercomputer. 

4. Numerical results and discussion 
4.1. Drag on a sphere 

To test the accuracy of the scheme for calculating F, we first compute the Stokes flow 
around a sphere as a test case. The sphere is located at (xc, yc, zc) = (0.5, 1,0.5) L ,  and 
its diameter is d = 0.25L. The sidewalls increase the drag on the sphere because of 
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FIGURE 3. Drag on the ellipsoid at different tilt angles. The theoretical result without wall effect 
(Happel & Brenner 1986, p. 223): 4 = puU(5.672+0.828 cos2 a)  is also shown for comparison. 

blockage of the flow area. To use the theoretical result for a sphere at the centre of a 
circular cylinder, we have to convert the area blockage ratio to an effective radius ratio. 
If we use an effective radius that gives the same area L2, a corrected Stokes drag 
coefficient is obtained for the parameters used here (Happel & Brenner 1986, p. 318): 

C, = 43.178/R. 

The result of our calculation is about 6.9% higher than the corrected Stokes drag. If 
we use the radius of the inscribed circle, the corrected Stokes drag coefficient is only 
2 YO higher than our computation, suggesting that this radius represents the actual 
blockage better. We have also tested a smaller sphere (d  = 0.125L), and the drag is 
again between the Stokes drags corrected using the inscribed circle and the equi-area 
circle. No better comparison is available, and the numerical tests give us a rough idea 
of the accuracy of the force calculation. 

4.2. Drag and torque on the ellipsoid 
The ellipsoid is fixed at seven different tilt angles: a = 0", lo", 30", 45", 60", 80" and 90", 
and the Stokes, inertial perturbation and normal stress perturbation problems are 
solved. First, let us look at the forces on the body. The drag and lift obtained in the 
Stokes problem are compared to the theoretical results of Happel & Brenner (1986) in 
figures 3 and 4. The estimation of the wall effect on the drag is only possible when the 
ellipsoid lies axisymmetrically on the centre of a circular cylinder and its major axis is 
much smaller than the diameter of the cylinder (Happel & Brenner 1986, p. 338). This 
corresponds to a = 90" in our problem, but the ratio of length here is not sufficiently 
small (= 0.22 for the radius of the equi-area circle). Based on this ratio, the asymptotic 
formula gives a correction factor of 1.376 for the drag, which underestimates the wall 
effect. Our computation yields a value about 9 YO higher than the corrected drag (figure 
3). At smaller tilt angles, the wall effect should be larger, but no relevant theoretical 
results are available for comparison. The Stokes lift from our computation, however, 
agrees relatively well with the theoretical result (figure 4). The inertia and normal stress 
perturbations give a drag on the order of respectively. Because these 
should be identically zero, their values represent the typical error in our calculations. 

and 
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FIGURE 4. Life on the ellipsoid at different tilt angles. The theoretical result (Happel & Brenner 
1986): 4 = 0.828paU sin a cos a is also shown for comparison. 
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FIGURE 5. The torques on the ellipsoid caused by the inertial perturbation and 
the normal stress perturbation. 

We now turn our attention to the torque on the ellipsoid. For the Stokes flow, the 
torque should vanish identically. Our calculation gives torque components on the 
order of For the inertial and normal stress perturbations, the y -  and z- 
components of the torque should also vanish because of symmetry. Their values in our 
computation are typically on the order of lop5. This is regarded as the typical error in 
our torque calculations. Figure 5 shows the x-component of the torque for different tilt 
angles obtained from the inertial and normal stress perturbations. 

At any tilt angle 0" < a < 90°, inertia exerts a negative torque on the ellipsoid which 
turns it broadside-on. This effect is well known both from perturbation with weak 
inertia (Cox 1965) and from direct numerical simulations at moderately large Reynolds 
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FIGURE 6. The sidewise drift of an ellipsoid. a is the tilt angle and /3 is the angle between the 
symmetry axis of the particle and the direction of its falling velocity. 

numbers (Feng, Hu & Joseph 1994). The normal stress applies a positive torque which 
turns the ellipsoid to a vertical head-on configuration. This effect has been obtained by 
the perturbation theories of Leal (1975). The torque due to normal stress is typically 
one order of magnitude larger than that due to inertia. 

Since Cox's (1965) result is for a spheroid of small eccentricity (near-sphere) and 
Leal's (1975) is for a slender body, direct comparison with figure 5 is not appropriate. 
However, we notice that the torque has the same form in both limiting cases: 

Cox: M ,  = - Kl R sin /3 cos p, 
Leal ; M ,  = K, W sin /3 cos p, 

where Kl and K, are positive constants; p is the angle between the symmetry axis of 
the body and the direction of free sedimentation, which is related to our tilt angle a by 
tan a tan p = K3 < 1, K3 depending on the shape of the body (see Leal 1975, pp. 309, 
335). If one assumes that the form in (12) holds for a more general ellipsoid, then for 
both inertial and normal stress perturbations 

sin a cos a 
sin2 a+ Kl cos' a' Mx 

which gives a larger torque for angles a < 45" than 90"-a. This is true in figure 5 
except for the point a = 60". We refined the mesh to check this. The magnitudes of Mu, 
M ,  and M, are further reduced for the finer mesh, but M ,  does not change appreciably. 
Our conjecture is that the asymptotic results (12) cannot be generalized to ellipsoids of 
intermediate aspect ratio. 

4.3. Equilibrium tilt angle 
We now consider how the torques in figure 5 can be related to the orientation of the 
ellipsoid when it settles steadily in an infinite expanse of fluid. In Stokes flow, the 
ellipsoid will migrate laterally while settling (figure 6) : 

V / U  = tan (a+p). (13) 
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FIGURE 7. The equilibrium tilt angle as a function of the ratio of the Reynolds number to the 
Weissenberg number. This ratio is related to the climbing constant by R/ W = 0.741pa2//3. 0, Data 
points computed from (15) and the solid line is a smoothed curve-fitting to the circles; x , data points 
obtained by neglecting the sidewise drift of the particle; 0, experimental points from Liu & Joseph 
(1993) (the last point at R / W  = 6.25 corresponds to R = 3.6, which is out of the range of the 
perturbation theory). 

As tan a tan /3 = K,, V can be expressed by the shape and the orientation of the 
particle : 

U(1- K,) V =  
tan a+ K,/tan a’ 

Now the torque on the ellipsoid can be computed as the sum of two components of the 
flow: 

where R,, W, are the Reynolds number and Weissenberg number computed using U, 
and R,, Wv are those using V. Eliminating R,, W, using (14) and writing R,, W, as 
R and W, we have 

M, = R ,  MF’(a) + W, M:)(sL) - Rv MF’Qn - a)  - W, M:’(;n -a), 

1-K, 
Mp(;n -a) 

tan a + K,/tan a 

1-K, 
M:’,2’(;n - a)}. (1 5 )  

tan a + K,/tan a 

An equilibrium tilt angle a, can be defined by 

M,(a,) = 0. (16) 
The geometric parameter K, can be computed from the drag forces on the ellipsoid 
when its symmetry axis is parallel and perpendicular to a uniform stream (Happel & 
Brenner 1986, p. 223). For aspect ratio = 2: 1, we get K, = 0.8731. This gives us the 
smoothed curve in figure 7. Data points computed by neglecting the lateral drift are 
also shown. The effect of sidewise drift on the equilibrium orientation is minimal. This 
is because the aspect ratio of the ellipsoid is not large and there is a certain degree of 
symmetry about 45” in the two curves of figure 5.  
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The competition between inertia and normal stresses is represented by the elasticity 
number of the fluid E = W/R and is independent of the particle's velocity. This is 
consistent with the fact that the present result is valid only for slow sedimentation. The 
competition can also be demonstrated by a ratio of lengths: a length typical of 
gradient, such as the characteristic length of the body a, and a material length 
expressed by, say, (-a,/p)''z (see Joseph 1990, 0 17.1, p. 483). We can assert that the 
length 1 = @/p)1'2 is a suitable measure of the material length. When a l l  is small, 
normal stresses dominate; when al l  is large, inertia dominates. 

Curiously, the curve in figure 7 predicts multiple equilibrium orientations for a small 
range of R/W. Let us consider the stability of these tilt angles. The effect of sidewise 
drift will be neglected and the equilibrium tilt angle satisfies 

Mx(a,) z RM:'(a,) + WM?'(a,) = 0. (17) 

Because of the definitions of the angle a and the sign of the torque, an equilibrium a, 
is stable if 

The dependence of R and W on a arises because the fall velocity U depends on the 
orientation of the ellipsoid in free settling. Since R and Ware linear in U,  the two terms 
in the parentheses cancel out owing to (17). Then, we can write 

Noting that figure 7 is actually a plot of -MF)(a)/M:)(a) versus a, we observe that 
within an interval of a around 45", 

This interval can be tentatively set to be from 30" to 60". The exact range is unknown 
at this point since we have tested only five different angles between 0" and 90". Because 
R > 0, M z )  > 0, the equilibrium tilt angles within this range are unstable, giving rise 
to a hysteresis loop. This surprising result has not yet been tested by experiments. In 
fact, for the ratio R/W to get into the range of the kink in figure 7 (R/WZ lo), the 
climbing constant 8 has to be very small. For instance, if p = 1 g cm-3 and a = 1 cm, 
8 must be as small as 0.07 g cm-'. The smallest climbing constant measured by Joseph 
et al. (1994) is about 0.97 g cm-' for STP. Thus, the experimental verification of this 
phenomenon will be a delicate and difficult matter. We also note that the range of 
unstable tilt angles may depend on the shape of the particle if the effect of sidewise drift 
is considered. 

If one uses the analytical results of Cox (1965) and Leal (1975) to define an 
equilibrium tilt angle (equation (12)), then a, would be zero for elasticity numbers 
below a critical value, and would jump to 90" when this critical value is exceeded. 
Experiments on very slow sedimentations have shown, however, that intermediate tilt 
angles do exist and they are very sensitive to the shape of the particle (Liu & Joseph 
1993). This again suggests that the asymptotic forms of (12) may not apply to an 
ellipsoid of a moderate aspect ratio. Finally it should be pointed out that the results 
given here are subject to wall effects due to the finite volume of our computational 
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Direction of 
the Stokes flow 

FIGURE 8. Streamlines on the symmetry plane for the Stokes flow around the ellipsoid posed at 
a = 45". Two 'stagnation points' with pressure extrema can be found at the front and the back 
of the body. 

domain. If the wall effects amount to an increased fall velocity, the data in figure 7 will 
still be valid for an infinite domain. In addition, since the particle is in the centre of the 
domain, we expect the walls not to affect the turning of the ellipsoid very much. 

4.4. Analysis of the f low fields 
We can gain further knowledge of the opposing effects of inertia and normal stress by 
studying the flow fields around the particle. Figure 8 shows streamlines of the Stokes 
flow on the symmetry plane (x = 0.5) for CL = 45". Two stagnation points can be 
identified on the front and the back of the body where pressure po  has a maximum and 
a minimum. The stagnation points are also distinguished points for the perturbation 
velocities shown in figures 9(a) and 9(b) and for the perturbation pressure in figures 
10(a) and lO(b). The perturbation velocity for inertia, u, is such that the fluid impinges 
upon the particle at the two points of stagnation. The perturbation pressure for inertia, 
pl ,  is maximum at these two points; its distribution explains the negative torque 
created by inertia. The direction of the velocity u2, associated with viscoelastic 
perturbation, is opposite to ul; two streams come toward the body from the left and 
the right and the fluid flows away from the stagnation points along the stagnation 
streamlines of the Stokes flow. The perturbation pressure for viscoelasticity is opposite 
to pl; it gives rise to a suction at the stagnation points which has the effect of turning 
the long side of the ellipsoid parallel to the stream, consistent with observations. For 
Stokes flow, the velocity and pressure have different signs at the front and rear 
stagnation points. The inertial and viscoelastic perturbations, however, produce 
velocity and pressure that have the same sign at the front and the rear. This is 
consistent with the parity of linear and quadratic perturbations of rest. 

The results exhibited in figures 9 and 10 show that the differences between 
Newtonian and viscoelastic fluids are maximal in the sense that every flow quantity 
which we computed changes its sign. Not only the overall torques, but the pressure and 
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FIGURE 9. (a) Velocity field on the symmetry plane due to inertial perturbation. a = 45". (6) Velocity 
field on the symmetry plane due to normal stress perturbation. a = 45". The magnitude of u2 is much 
larger than that of ul, and the velocity is scaled differently in (a) and (b). 

velocity components at nearly all points on the body have different signs in Newtonian 
and viscoelastic flows. We are compelled to believe that the contrary behaviours of 
particles settling in Newtonian and viscoelastic fluids are associated with the ubiquitous 
changing of sign. 

The above analysis centres around the pressure distribution and does not include the 
effects of shear and extra normal stresses. For the inertial perturbation, the viscous 
normal stress vanishes on the solid surface. It is natural that the inertia of the fluid is 
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FIGURE 10. (a) Pressure contours on the symmetry plane due to inertial perturbation. The velocity 
field u, causes two high pressures (marked by ‘plus’ signs) and two low pressures (marked by ‘minus’ 
signs) on the surface of the ellipsoid which give rise to a negative torque. (b) Pressure contours on the 
symmetry plane due to normal stress perturbation. The velocity field u2 causes two high pressures 
(marked by ‘plus’ signs) and two low pressures (marked by ‘minus’ signs) on the surface of the 
ellipsoid which give rise to a positive torque. 

manifested by the pressure (figure lOa), which then produces the negative torque. One 
would think that the major effect of viscoelasticity in turning a long body should come 
from the normal stress term A, + dlq(uo. But this turns out not to be the case. We have 
evaluated the effect of each term multiplying W in (7) which arises from the 
perturbation of the Stokes flow by viscoelasticity (6). The dominant contribution to the 
positive torque is from the pressure p , .  the term Al(u,) is basically neutral and 
A, + eA$o leads to weak broadside-on turning, opposing p,. Therefore, analysing the 
distributions of p1 and p ,  is sufficient in explaining the opposing torques exerted by 
inertia and viscoelasticity. 

It is perhaps relevant to mention an earlier attempt at interpreting the turning of a 
long body by viscoelasticity. Joseph (1992) and Joseph et al. (1992) used a potential 
flow field to evaluate the normal stress at a stagnation point. They showed that the 
second-order term gives a positive (tensile) contribution to the normal stress and 
surmized that this may be the mechanism that turns the long side of the particle parallel 
to the stream. This argument does not apply to our problem because the normal stress 
from the second-order term vanishes at the stagnation point because of the no-slip 
condition, which a potential flow does not satisfy. 

5. Discussion of experiments 
Liu & Joseph (1993) and Joseph & Liu (1993) did experiments on the settling of long 

bodies. They documented a tilt transition which is associated with a critical value of the 
fall velocity U in a viscoelastic fluid. The phenomenon appears to correlate with the 
viscoelastic Mach number, with the particle’s nose down when the settling velocity is 
less than the shear wave speed of the liquid measured on the wave speed meter 
( M  < l), and broadside on for larger U. The transition is rather abrupt, and the plots of 
the experimental data resemble a structured shock wave with data on the curve 
representing a smooth connection between the two distinct states. 

Obviously, the tilt transition is a process different from the prediction given here 
based on the competition between weak normal stress and weak inertia that perturb a 
Stokes flow. In the limit of slow motion ( R  << 1 and W <  l ) ,  the equilibrium 
orientation is determined by the elasticity number and is independent of the settling 
velocity. The dynamic tilt transition, on the other hand, is dictated by the Mach 
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number and concerns the propagation of a discontinuity in a viscoelastic medium. It 
is well known that such dynamic properties may not be preserved when the constitutive 
equation degenerates into an asymptotic form, such as the second-order fluid model, 
under extreme conditions (Astarita & Marrucci 1975, p. 276). Therefore, the apparent 
disagreement between the present result and experiments at high Reynolds and 
Weissenberg numbers is understandable. 

In a set of sedimentation tests at extremely low speeds, Liu & Joseph (1993) did 
observe an equilibrium tilt angle between 0" and 90". These tilt angles are not strongly 
dependent on velocity until the Mach number passes through unity, when they change 
dramatically. They are also very sensitive to the shape of the particle and so were 
named 'shape tilting'. Figure 7 shows a few points from Liu & Joseph (1993) for an 
aluminium cylinder with flat ends settling in aqueous polyox. Shape tilting may be 
related to a kind of competition between inertia and normal stresses which arises in 
perturbation analysis and for which the elasticity number is the important parameter. 

In summary, there are two kinds of competition. The first is that predicted by the 
present study which prevails when R + 0 and W+ 0. In this case, the competition is 
resolved by an elasticity number E = W/R.  The other kind of competition is 
represented by the tilt transition observed in experiment when M = (RW)1'2 > 1, 
which may be related to change of type when the fall velocity exceeds the speeds at 
which signals can propagate into rest. This type of competition is dynamic, and occurs 
for critical values of U in a family of fluids with different elasticity numbers. 

In closing, it should be pointed out that nose-down settling has also been reported 
in viscoelastic liquids without measurable normal stress differences, for example, in 
0.39 YO aqueous Xanthan and in 0.4 % Carbopol in 50 % aqueous glycerin (Joseph & 
Liu 1993). These experiments suggest that the memory of shear thinning leads to 
corridors of reduced viscosity through which a long particle settles more easily with its 
long side parallel to the fall. This is yet another mechanism potentially responsible for 
turning a long body in a viscoelastic fluid. 

6.  Conclusions 
We have computed the force and torque on an ellipsoid settling slowly in a 

viscoelastic liquid. Although the problem is in steady state, the preferred orientation 
can be inferred from the torque values. Based on the results presented in this paper, the 
following conclusions can be drawn. 

(i) The turning of a long particle is determined mainly by the pressure at the points 
of stagnation of the Stokes flow. 

(ii) The perturbation pressure and velocity distributions are reversed around the 
particle for inertia and viscoelasticity. 

(iii) This reversal gives rise to turning couples in opposite directions: fluid inertia 
produces a torque that turns the broadside of the ellipsoid perpendicular to the 
direction of fall; normal stress gives rise to a torque that turns the broadside of the 
ellipsoid parallel to the direction of fall. 

(iv) Under the mutual actions of inertia and normal stress, the ellipsoid assumes an 
equilibrium tilt angle between 0" and 90". Under the assumption of a second-order fluid 
model, the equilibrium orientation is a function of the ratio of the Reynolds number 
to the Weissenberg number. 

(v) Our numerical results suggest the existence of a range of unstable tilt angles 
around 45". This proposition needs to be examined by more detailed computations and 
experiments. 
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(vi) If the fall velocity is not vanishingly small, the competition of normal stress and 
inertia is manifested by the tilt transition, which appears to be related to the mechanism 
of change of type. This mechanism is not related to the competition predicted by 
perturbing the Stokes flow. 
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